Description of Hungarian notation and its benefits
Hungarian notation is a way to create standard names for the variables, data structures, procedures and methods created within a software project. The process of creating new Hungarians (i.e. creating new Hungarian notations) is a way to build a nomenclature that can be easily shared among the developers who create code for a project so that all participants can mutually comprehend their joint software product.

UNIQUE TAGS FOR TYPE DEFINITIONS AND INSTANCE VARIABLES

The key idea in Hungarian notation for naming data objects is to create a unique tag for every unique data type that is defined within the software project. A large software project might use thousands of different data types. Some of these type declarations would assign a restrictive meaning to a primitive data type supplied by a programming language. Many others would supply type names to record or object declarations used within the software project. Creating a new Hungarian tag for each allows a software developer to easily identify what a data instance describes by examining its name without referring to the instance declaration.

The new Hungarian tag names that are coined for new data types are chosen to be 2 to 4 alphanumeric characters in length. Data types that are very frequently used are usually given names that are 2 or 3 characters long with rarely used types sometimes given 4 character length names. The names are usually chosen to be mnemonics that will help project members remember the meaning and usage of a data structure. Commonly used data types are given short names because composition operations such as mapping (described below) which perform transformations from one type to another cause composite names to be created which can be quite long unless the type name constituents are short.

Tags, which describe type definitions, are given names with all characters capitalized. Instances of that type used within the project are given that type's name written entirely in lower case.

 (eg. A type definition of a Document Description record might be given the Hungarian tag "DOD" (all upper case). An instance record of the "DOD" type would be given the tag "dod".

Example declaration in C:

DOD dod;

 A C #define statement that declares that file numbers within the program are stored in two-byte integers (#define FN short). A file number variable used to identify individual files might be given the tag "fn". A File Control Block, a record that contains all data necessary to access the contents of a particular file, might be tagged as an "FCB". Individual instances of the "FCB" type would be given fcb tags.

There are generic types that are known to most developers who use Hungarian notation. These correspond to the base types available in a particular programming language such as C. Instances of these generic types are typically given 1 or 2 character length Hungarian tags.

 b one character byte

 ch one byte character

 W two-byte word

 l four-byte word

 fl floating point word

 f boolean flag whose permitted values are true or false

 sz zero terminated C-style string

 st Pascal string beginning with a count of characters followed by the declared number of characters

Generic type Hungarian tags are commonly used in code that performs generalized operations upon data where the detailed meaning of the data is non-obvious, unavailable, or obscured. A routine in a memory management library would make use of generic types because the programmer who designed the routine would regard the data to be manipulated as blocks of so many bytes or words.

Much more frequently, data items used in a project have much more specific meanings that restrict the kinds of operations that can be applied to those types of data. In such cases, even though the data item might be coded as a two byte entity that could be given the 'w' Hungarian tag, it is usually much more useful to label it with a unique Hungarian tag which describes how it could be used within the project.

 For example, a variable, which records the horizontal pixel position within a bit mapped display at which a character is to be displayed, might be given the Hungarian tag 'xp' for x-position. A variable, which record the vertical pixel position within a bitmap, might be given the 'yp' Hungarian that describes a character's y-position. The horizontal distance between two positions on a bitmap might be tagged as a 'dxp'. The vertical position between positions on a bitmap might be tagged as a 'dyp'. A variable, which codes selections within a palette of colors, might be given the 'co' tag.

Hungarian tags can allow software developers to do type checking on the expressions they write. In any expression they might use two or three of the thousands of data types that might be used in a large software project. It is frequently helpful to be able to determine with a glance that an expression is well formed. (The Microsoft Word and Microsoft Excel projects defined thousands of Hungarian tags of which a few hundred are fundamental and used throughout the project. The possibilities for naming confusion in these projects were enormous.)

Programmers would know that they could add a 'dxp' to an 'xp' to produce a new 'xp'. Translation: adding an x distance to an x position produces a different x-position. They would also know that they could add a 'dyp' to a 'yp' which would produce a new 'yp'. Translation: adding a y-distance to a y-position would produce a new valid y-position. Using these Hungarians a developer would be highly suspicious that a calculation were incorrect if he encountered an expression that added an xp to a yp, or even one that added xp's or yp's together.

Similarly, a programmer would quickly realize that an attempt to add an enumerated type encoding a color given the Hungarian tag co would be very unlikely to produce a sensible result if it were added to a dxp, a horizontal x distance. If he encountered the expression dxp + co, he would be correct to suspect that the calculation very likely produced a garbage result.

PREFIXES TO LABEL COMPOSITIONS OF DATA TYPES AND LABEL TYPES DERIVED FROM AN EXISTING DATA TYPE

Prefixes are used to label different compositions of data types and to generate a small number of standard derived types from an existing type.
Most modern programming languages provide pointer and array constructs that allow programmers to traverse links from one data structure to another and to pick out a particular data item aggregated into an array. Hungarian notation defines a set of standard composable prefixes that can be added to Hungarian type tags to describe the meanings of pointers and arrays defined within a project.
Here are standard prefixes that can be composed with Hungarian data tags to describe pointer variables that point to a particular type of data and arrays, which contain data of a particular type.
 p a pointer. If the pointer points at data of type FOO, it would be declared in C as

 FOO *pfoo;

 A pointer to data of Hungarian type BAR, would be declared as

 BAR *pbar;

The expression *pfoo would deliver the data item of type foo at which the pfoo variable points.

The expression (*pfoo).bar delivers the bar item recorded within the record of type FOO pointed to by pfoo. pfoo->bar also delivers the bar item recorded within the record of type FOO pointed to by pfoo.

 pp A pointer to a pointer. So a variable ppfoo would be a pointer that points to a pointer which points to data of type foo. Its declaration would be:

 FOO **pfoo;

 h a handle, which is a pointer to a pointer to a data object that resides in a memory managed heap. A handle to data of type BAR, would be declared to be:

 BAR **hbar;

 By dereferencing this handle once, a pointer can be produced which points at the data stored within the handle:

 pbar = *hbar;

Following are standard prefixes that are composed with tags to describe

different specializations of the array type.

 rg: an unstructured array that contains data items of a uniform data type.

An unstructured array that records a collection of type ‘FOO’ is given the rgfoo tag.

Example declaration:

 FOO rgfoo[];

The rg is short for range, so an rgfoo would be called a 'range of foo'. The idea behind the naming of the range prefix, is that applying an index to the array (the domain of this operation) produces data of the proper type as the range of this kind of mapping operation.

An integer index that can select a particular foo in the rgfoo array is given the tag ifoo (index of foo). An
expression that produces the i-th element of the rgfoo array would be rgfoo[ifoo].

 mp: a specialized range array in which data of one type is used as an array index to access data of another type in the range of the array.

This is a mathematical mapping operation, which maps instances of one type into instances of another so the Hungarian used to describe it is mp.

If an integer type foo existed which somehow corresponded with data of type bar, an array with Hungarian tag mpfoobar would indicate that the indexes that access the array are of type FOO, that the elements stored in the array are of type BAR, and that a valid bar exists in the array for the all possible foo indexes that might be used in the program. The proper declaration for such a mapping array would be:

 BAR mpfoobar[fooMax];

 Using a real world example, for many years small integer values given the Hungarian tag doc, were used to identify specific documents that were opened within Microsoft Word. The data structure that described the characteristics of a particular document was called a DOcument Descriptor, which was assigned the Hungarian tag DOD.

Document descriptors were very large data structures so DODs were allocated in a heap when a new document was opened or created and deallocated when the document being described was closed. The heap handle, which pointed to a document’s allocated DOD, was an hdod. If the new document was to be described by a particular doc number, the newly allocated hdod was stored in a globally accessible array named mpdochdod via an instruction of the form:

 mpdochdod[doc] = hdod;

 An immense number of procedures within Microsoft Word operated on documents so doc numbers were passed as parameters to those routines. When those routines needed to access the document's description, the code would use the doc number as an index into mpdochdod to retrieve the hdod for that doc number, like this:

 hdod = mpdochdod[doc];

 Then the routine would use the hdod to access data stored within the dod. The current state of a document's selection description was retrieved via the expression (*hdod)->selCur.

dn:
The dn (domain) prefix was given to arrays when the indexes used to access the array had fixed meanings within the program such as the operation code assignments used within for an interpreted language. In such cases, an array would be written whose elements described each of the operations that could be executed with the interpreted language.

If data instances of type foo were small integer operation codes, a data type of EFOO (Entries describing FOO) would be defined to describe the action that would take place when that particular op code was executed. That description would certainly contain a enumerated type to describe the format and length of the operation to be executed and would contain a pointer or index number which identified a routine which would be executed to perform the action prescribed by the opcode.

If the smallest foo that was greater than all of the foo opcodes was fooMax, all of the EFOO operation descriptions would be stored in an array given the Hungarian name dnfoo. Its declaration would be

EFOO dnfoo[fooMax];

 If such an opcode was recorded within a saved document and if a programmer mistakenly added a new entry between already existing EFOO entries, they would inadvertently change the meaning of the interpreted code stored in documents and change the meaning of operations already recorded within existing documents. Pre-existing documents would immediately not make sense in newly compiled versions of the application and would cause the application to crash or to perform totally invalid operations upon the document when they were read by new versions of the application.

 A programmer who understood Hungarian when encountering an array of dnfoo would know that if he was coining a new opcode, he would have to create a new index number foo larger than any existing opcodes currently in use and would have to add a new operation description in the dnfoo array for that new foo opcode to describe how to interpret that opcode when it is encountered by an interpreter.

grp:
A grp (group) prefix is given to byte arrays which record sequentially allocated variable-length data structures of the same type one after the other. Assume that the operations defined within an interpreted language can be described by the type definition

 typedef

{

char opc; // operation code

char len; // total length of operation is sizeof(OP) + 2

 char rgb[]; // variable length data specific to particular

operation type

} OP;

 A byte array can be allocated to record a linear sequence of operations. In other words this array records a sequence of operations and encodes an executable program.

 Let's declare our group byte array to be

 char grpop[cbMaxOperationAllocation];

where cbMaxOperationAllocation bytes is the length of the largest program that can be recorded in the array.

 An initial operation structure is recorded beginning at grpop[0]. Since the length of the 0th OP record is op.len + 2, the next operation if there is one is recorded beginning at grpop[length of 0th record].

These prefixes can be composed and prefixed to a Hungarian type tag to name data instances that are the starting points of complex data structure traversals.

Example:

A rghrgpfoo would be a range (rg) of handles (h) which each contain a range (rg) of pointers (p) to data items of type FOO.

Common prefixes for standard derived types:

i - ifoo would be an index in an array rgfoo that contains elements of type FOO

Example of usage: Given an rgfoo containing itms of type FOO,

rgfoo[ifoo] delivers the item of rgfoo specified by ifoo

foo = rgfoo[ifoo];
c - cfoo would be a count of elements of type FOO. A count derived type would be used to accumulate the count of data items in a collection of a data type that meet a particular condition

Example of usage:

#define ifooNil -1

cfooNil = 0;

for (ifoo = 0; ifoo < ifooMac; ifoo++)

{

if (rgfoo[ifoo] == ifooNil)

cfooNil++;

}

Upon completion of the loop, cfooNil would contain the number of array items that contain Nil values.

d - dfoo would be the difference between two elements of type FOO.

Example of usage: if xp is the type for a horizontal x position for drawing primitives in a bitmap, a dxp type derived from the xp type would be used to store the difference between two xp values

dxp = xpLast – xpFirst;

Adding a dxp to an xp gives a new xp as the result:

xpLast = xpFirst + dxp;

b - bfoo would be the relative offset to a type FOO. This is used for field displacements in a data structure with variable size fields.

cb - cbFOO would be the size of an item of type FOO measured in bytes

Example: #define cbFOO sizeof(FOO)

cw - cwFOO would be the size of an item of type FOO measured in words

Examle: #define cwFOO (sizeof(FOO) + 1) / 2

MODIFYING SUFFIXES TO DISAMBIGUATE INSTANCE VARIABLES AND EXPRESS INVARIANTS

Modifying suffixes that are chosen by the programmer to describe the meaning of a data instance can be affixed to the end of Hungarian tags to give a unique name to a data instance. The first letter of these modifiers is capitalized to demarcate the boundary of the base Hungarian tag and the modifier. If a search operation that examines an array of foos to select the best candidate foo from an array of foos, the pointer to that particular foo might be labeled pfooBest.

A set of standard modifier suffixes can be added to the name of an array index to record the invariants that must be kept true when that index is used. Having identified a data instance that is named using a standard suffix, the reader can instantly make a number of assertions about how that instance can validly be used in the program. Most importantly, such assertions allow one to identify when an instance is misused within the program in a way that will cause an error in execution.

The Max suffix is given to indexes that record the maximum allocation size of an array.

Given the allocation in C of:

struct FOO rgfoo[ifooMax];

we would know that references to rgfoo[ifoo] where 0 <= ifoo < ifooMax are guaranteed to be within the memory allocation for rgfoo.

The Mac suffix is attached to indexes that record the current maximum usage of elements within an array's allocation.

Given the allocation:

struct FOO rgfoo[ifooMax]

we know that an ifooMac index is always <= ifooMax and that references to rgfoo[ifoo] where 0 <= ifoo < ifooMac contain elements within the array that are valid and in use.

The condition that ifooMac == ifooMax is a signal that all of the space allocated to the array is in use. It would be an error to deallocate space from a dynamic array when ifooMac == ifooMax unless ifooMac were set again equal to the new smaller ifooMax when the deallocation were finished.

If ifooMax were increased for a dynamically allocated rgfoo, when ifooMac == ifooMax the next element in the array where data could be recorded would be rgfoo[ifooMac], after which ifooMac would be incremented by one to record the fact that the current used area of the array has increased by one entry.

When a contiguous range of entries in an array is being operated upon within a routine, frequently the First and Lim suffixes will be suffixed to index names to describe the bounds of the range.

An index of the rgfoo array, which describes the maximum number of elements allocated in the rgfoo array, would be tagged ifooMax.

An index of the rgfoo array, which describes the actual number of elements allocated in the rgfoo array, would be tagged ifooMac.

A count of the number of valid foo elements recorded within an array or some other data structure would be tagged as a 'cfoo' (count of foo)

Examples that use these standard modifiers:

Given the declaration

#define FOO int

FOO rgfoo[ifooMax];

a loop, which would initialize all elements of the array to 0, would be

for (ifoo = 0; ifoo < ifooMax; ifoo++)

 rgfoo[ifoo] = 0;

A routine, which would linearly search rgfoo for the presence of a particular foo value when rgfoo has ifooMac entries recorded, would be

Boolean FParticularFooRecorded(FOO *rgfoo, short ifooMac, short fooParticular)

{

#define ifooNil -1

short ifoo;

 for (ifoo = 0; ifoo < ifooMac; ifoo++)

{

if (rgfoo[ifoo] == fooParticular)

return ifoo;

}

return ifooNil;

}

Here are prefixes that

NAMES FOR PROCEDURES AND FUNCTIONS

The capitalization scheme for procedure names is that each word or type declaration used in the name is written with its initial letter capitalized. The name of the procedure defined in the previous example has been given a well-formed Hungarian name adhering to this rule. The capitalization rule used is different from what is used for type definitions and data instance declarations.

If the routine name is a function that returns a variable, the type of the data is placed first in the functions name. A routine, which returns the truth or falsity of a predicate, would be named so that the function's name begins with the F (boolean) Hungarian tag followed by a description of the meaning of the predicate.

Example:

 Boolean FCpLineFirst(doc, cp)

 {

 };

might be the declaration of a predicate (function that returns true or false) that tests whether the CP (character position) passed in for the given doc (document number) marks the beginning of a text line that will be displayed onscreen.

Functions rather frequently are given names that include the Hungarian tags of the data passed unto the function as the last words within the function name.

The declaration

DL DlDisplayedForDocCp(DOC doc, CP cp);

might name a function that when passed the character position (CP) of a particular character within a specified document (DOC), it returns the index of the display line (DL) upon which that character would be displayed on the display terminal.

If a procedure is being defined (function with no return values), the words used in the procedure name might generally describe the operation that is being performed without specifically mentioning the parameters passed in.

The declaration

void FormatLine(doc, cp)

might describe a routine, which calculates the horizontal display position for each character within a line of text to be displayed which resides within a specified document (doc) when the line begins at a specified character position (CP).

